Telomerase Inhibition by MST-312 Sensitizes Breast Cancer Cells to the Anti-cancer Properties of Plumbagin

Author:

Sameni SafouraORCID,Viswanathan RamyaORCID,Ng Gavin Yong-Quan,Martinez-Lopez WilnerORCID,Hande M. PrakashORCID

Abstract

Breast cancer is the most common cause of malignancy and the second most common cause of death due to cancer in women. This heterogeneous disease is currently broadly classified as estrogen receptor (ER), progesterone receptor (PR) positive luminal tumors, human epidermal growth factor receptor 2 (HER2) amplified tumors and triple-negative breast cancers (TNBC). Phytochemicals are proven to be promising anti-cancer chemotherapeutics agents with minimal cytotoxic effects on normal cells. Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone) is a phytochemical derived from the roots of Plumbago zeylanica and it is known to possess anti-cancer properties similar to other compounds of naphthoquinones. In about 90% of cancer cells, the telomerase enzyme activity is revived to add telomeric repeats to evade apoptosis. In this study, a combinatorial approach of combining the anti-cancer compound plumbagin to induce genotoxicity and a potent telomerase inhibitor, MST-312 (synthetic derivative of tea catechins), was used to determine the combinational treatment-induced lethality in breast cancer cells such as MDA-MB-231 (TNBC) and MCF-7 (lumina) cells. MDA-MB-231 cells were responsive to combination treatment in both short-term (48 h) and long-term treatment (14 days) in a synergistic manner, whereas in MCF-7, the combination treatment was more effective in the long-term regimen. Furthermore, the cytotoxic effects of the plumbagin and MST-312 combination treatment were not recoverable after the short-term treatment. In conclusion, a combination treatment of MST-312 and plumbagin is proven to be more effective than a single plumbagin compound treatment in inducing DNA damage and telomere dysfunction leading to greater genome instability, cell cycle arrest and eventually cell death in cancer cells.

Publisher

ScienceOpen

Subject

Genetics,Molecular Biology

Reference45 articles.

1. Anticancer effects and mechanisms of action of plumbagin: review of research advances;Z Yin;Biomed Res. Int,2020

2. Telomerase: a target for cancer therapeutics;JW Shay;Cancer Cell,2002

3. Mechanism-based combination telomerase inhibition therapy;JW Shay;Cancer Cell,2005

4. Telomerase inhibition enhances the response to anticancer drug treatment in human breast cancer cells;MA Cerone;Mol. Cancer Ther,2006

5. Telomere biology—insights into an intriguing phenomenon;S Venkatesan;Cells,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3