Possibilities of personalized finite element segmental analysis of the cervical spine for predicting the course of dorsopathy

Author:

Yakovlev E. V.1ORCID,Ovsepyan A. L.2ORCID,Zhivolupov S. A.3ORCID,Smirnov A. A.4ORCID,Gnevyshev E. N.5ORCID

Affiliation:

1. Medical Center “Admiralteyskie Verfi”; Institute of Applied Psychoanalysis and Psychology of the University under the Interparliamentary Assembly of the EurAsEC; Moscow State Regional University

2. St Petersburg State Electrotechnical University “LETI” named after V.I. Ulyanov (Lenin)

3. Military Medical Academy named after S.M. Kirov

4. Moscow State Regional University

5. Institute of Applied Psychoanalysis and Psychology of the University under the Interparliamentary Assembly of the EurAsEC; 3rd Military Hospital of the Russian National Guard Troops

Abstract

Introduction. The use of mathematical modeling methods in clinical practice will make it possible to identify the pathogenetic forms of dorsopathies and thus reasonably use the concept of targeted treatment in the management of patients of this category.Aim. To evaluate the possibilities of finite element segmental analysis of the cervical spine for personalized treatment and prediction of the course of dorsopathies.Material and methods. Based on the combined data of computed and magnetic resonance imaging of the patient (female, born in 1951), a model of the C5 – C7 segment was generated, including: vertebrae C5, C6, C7, IVD, anterior and posterior longitudinal ligaments, two pairs of facet joints, spinal cord, nuchal ligament. Computer modeling and finite element method were used to  analyze the stress-strain state of the cervical spine of a patient with degenerative-dystrophic changes in the C2 – C7 segments. In the Abaqus/CAE 6.14 software, finite element analysis of the C5 – C7 stress-strain state was carried out in the state of flexion, rotation and compression. The data obtained during compression were compared with previous experiments in silico and in vitro for the norm.Results. For each state, stress and displacement diagrams, load-displacement curves, stress profiles in the MPD were obtained. The axial mobility of the segment under compressive load is two times lower compared to the norm under the same boundary conditions and material models. The degree of involvement of the spinal cord in conflicts with the surrounding anatomical structures was studied. When the model was rotated to the right, conflicts were observed between the spinal cord roots and the bone structures of the vertebrae in the foraminal zones, as well as at the level of the C5 – C6 and C6 – C7 discs with the left posterolateral surfaces of the fibrous rings. When the model was turned to the left, conflicts of the spinal cord were observed in all foraminal zones, as well as at the level of the C6 – C7 disc with the left posterolateral surface of the fibrous rings. Based on the data on stresses in the studied segment, further development of dorsopathies and degenerative changes in the cervical spine was predicted.Conclusions. The use of finite element segmental analysis of the cervical spine creates objective prerequisites for the formation of a combined personalized treatment and prediction of the course of dorsopathies.

Publisher

Remedium, Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3