Forecasting stock returns on the Amman Stock Exchange: Do neural networks outperform linear regressions?

Author:

Razzaq Al Rababa’a Abdel1,Saidat Zaid2ORCID,Hendawi Raed3ORCID

Affiliation:

1. Assistant Professor of Banking and Finance, Faculty of Economics and Administrative Sciences, Yarmouk University

2. Assistant Professor, Faculty of Business, Department of Finance and Banking Sciences, Applied Science Private University

3. Assistant Professor of Finance, Faculty of Economics and Administrative Sciences, Yarmouk University

Abstract

Different models have been used in the finance literature to predict the stock market returns. However, it remains an open question whether non-linear models can outperform linear models while providing accurate predictions for future returns. This study examines the prediction of the non-linear artificial neural network (ANN) models against the baseline linear regression models. This study aims specifically to compare the prediction performance of regression models with different specifications and static and dynamic ANN models. Thus, the analysis was conducted on a growing market, namely the Amman Stock Exchange. The results show that the trading volume and interest rates on loans tend to explain the monthly returns the most, compared to other predictors in the regressions. Moreover, incorporating more variables is not found to help in explaining the fluctuations in the stock market returns. More importantly, using the root mean square error (RMSE), as well as the mean absolute error statistical measures, the static ANN becomes the most preferred model for forecasting. The associated forecasting errors from these metrics become equal to 0.0021 and 0.0005, respectively. Lastly, the analysis conducted with the dynamic ANN model produced the highest RMSE value of 0.0067 since November 2018 following the amendment to the Jordanian income tax law. The same observation is also seen since the emerging of the COVID-19 outbreak (RMSE = 0.0042).

Publisher

LLC CPC Business Perspectives

Subject

Strategy and Management,Economics and Econometrics,Finance,Business and International Management

Reference55 articles.

1. Application of Artificial Neural Network for Predicting Maize Production in South Africa

2. Ahangar, R. G., Yahyazadehfar, M., & Pournaghshband, H. (2010). The comparison of methods artificial neural network with linear regression using specific variables for prediction stock price in Tehran stock exchange. International Journal of Computer Science and Information Security, 7(2), 38-46. - https://arxiv.org/ftp/arxiv/papers/1003/1003.1457.pdf

3. Relationship between Interest Rate and Stock Price: Empirical Evidence from Developed and Developing Countries

4. The Predictability of the Amman Stock Exchange using the Univariate Autoregressive Integrated Moving Average (ARIMA) Model

5. Al-Zubi, K. A., Salameh, H. M., & Hamad, H. A. (2010). Does the Predicating Power of Stock Return in Amman Stock Exchange (ASE) Improved by Using the Artificial Neural Networks ANN? International Research Journal of Finance and Economics, 46, 80-97.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. What determines the performance of pharmaceutical firms in India on account of COVID-19 interventions?;International Journal of Pharmaceutical and Healthcare Marketing;2023-12-29

2. ANALYSIS OF THE DYNAMICS OF EUROPE STOCK MARKETS DEVELOPMENT;Financial and credit activity problems of theory and practice;2023-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3