APPLICATION OF LONG SHORT-TERM MEMORY (LSTM) NETWORKS APPROACH FOR RIVER WATER LEVEL FORECASTING USING MULTIPLE RIVER BASINS: A CASE STUDY FOR SRI LANKA
Author:
Affiliation:
1. Graduate School of Engineering, The University of Tokyo
2. Institute of Industrial Science, The University of Tokyo
Publisher
Japan Society of Civil Engineers
Link
https://www.jstage.jst.go.jp/article/journalofjsce/12/2/12_23-16127/_pdf
Reference22 articles.
1. 1) Le, X. H., Ho, H. V., Lee, G., and Jung, S. : Application of long short-term memory (LSTM) neural network for flood forecasting, Water, Vol. 11, No. 7, pp. 1387, 2019.
2. 2) Okuno, S., Ikeuchi, K. and Aihara, K. : Practical data‐driven flood forecasting based on dynamical systems theory, Water Resources Research, Vol. 57, No. 3, pp. e2020WR028427, 2021.
3. 3) Agudelo-Otálora, L. M., Moscoso-Barrera, W. D., PaipaGaleano, L. A., & Mesa-Sciarrotta, C. : Comparison of physical models and artificial intelligence for prediction of flood levels, Tecnología y ciencias del agua, Vol. 9, No. 4, pp, 209-235, 2018.
4. 4) Govindaraju, R.S. : Artificial neural networks in hydrology I: Preliminary concepts, Journal of Hydrologic Engineering, Vol. 5, No. 2, pp. 115-123, 2000.
5. 5) LeCun, Y., Bengio, Y. and Hinton, G. : Deep learning. nature, Vol. 521, No. 7553, pp. 436-444, 2015.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3