Solving Boltzmann optimization problems with deep learning

Author:

Knoll Fiona,Daly John,Meyer Jess

Abstract

AbstractDecades of exponential scaling in high-performance computing (HPC) efficiency is coming to an end. Transistor-based logic in complementary metal-oxide semiconductor (CMOS) technology is approaching physical limits beyond which further miniaturization will be impossible. Future HPC efficiency gains will necessarily rely on new technologies and paradigms of computing. The Ising model shows particular promise as a future framework for highly energy-efficient computation. Ising systems are able to operate at energies approaching thermodynamic limits for energy consumption of computation. Ising systems can function as both logic and memory. Thus, they have the potential to significantly reduce energy costs inherent to CMOS computing by eliminating costly data movement. The challenge in creating Ising-based hardware is in optimizing useful circuits that produce correct results on fundamentally nondeterministic hardware. The contribution of this paper is a novel machine learning approach, a combination of deep neural networks and random forests, for efficiently solving optimization problems that minimize sources of error in the Ising model. In addition, we provide a process to express a Boltzmann probability optimization problem as a supervised machine learning problem.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3