“Digital twins elucidate critical role of Tscm in clinical persistence of TCR-engineered cell therapy”

Author:

Joslyn Louis R.ORCID,Huang Weize,Miles DaleORCID,Hosseini Iraj,Ramanujan SarojaORCID

Abstract

AbstractDespite recent progress in adoptive T cell therapy for cancer, understanding and predicting the kinetics of infused T cells remains a challenge. Multiple factors can impact the distribution, expansion, and decay or persistence of infused T cells in patients. We have developed a novel quantitative systems pharmacology (QSP) model of TCR-transgenic T cell therapy in patients with solid tumors to describe the kinetics of endogenous T cells and multiple memory subsets of engineered T cells after infusion. These T cells undergo lymphodepletion, proliferation, trafficking, differentiation, and apoptosis in blood, lymph nodes, tumor site, and other peripheral tissues. Using the model, we generated patient-matched digital twins that recapitulate the circulating T cell kinetics reported from a clinical trial of TCR-engineered T cells targeting E7 in patients with metastatic HPV-associated epithelial cancers. Analyses of key parameters influencing cell kinetics and differences among digital twins identify stem cell-like memory T cells (Tscm) cells as an important determinant of both expansion and persistence and suggest that Tscm-related differences contribute significantly to the observed variability in cellular kinetics among patients. We simulated in silico clinical trials using digital twins and predict that Tscm enrichment in the infused product improves persistence of the engineered T cells and could enable administration of a lower dose. Finally, we verified the broader relevance of the QSP model, the digital twins, and findings on the importance of Tscm enrichment by predicting kinetics for two patients with pancreatic cancer treated with KRAS G12D targeting T cell therapy. This work offers insight into the key role of Tscm biology on T cell kinetics and provides a quantitative framework to evaluate cellular kinetics for future efforts in the development and clinical application of TCR-engineered T cell therapies.

Funder

Genentech

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Drug Discovery,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3