An energy efficient way for quantitative magnetization switching

Author:

Li Xin,Singh Hanuman,Lin Jie,Zhang Shuai,Yi Bao,Chatterjee Jyotirmoy,Xiao Zhuyun,Mondal Sucheta,Tamura Nobumichi,Candler Rob N.,You Long,Bokor Jeffrey,Hong Jeongmin

Abstract

AbstractRecent advancements in electrically controlled spin devices have been made possible through the use of multiferroic systems comprising ferroelectric (FE) and ferromagnetic (FM) materials. This progress provides a promising avenue for developing energy-efficient devices that allow for electrically controlled magnetization switching. In this study, we fabricated spin orbit torque (SOT) devices using multiferroic composites and examined the angular dependence of SOT effects on localized in-plane strain induced by an out-of-plane electric field applied to the piezoelectric substrate. The induced strain precisely modulates magnetization switching via the SOT effect in multiferroic heterostructures, which also exhibit remarkable capability to modulate strain along different orientations – a feature with great potential for future applications in logic device arrays. To investigate the influence of electric fields on magnetization switching, harmonic Hall measurements, synchrotron-powered x-ray magnetic circular dichroism-photoemission electron microscopy (XMCD-PEEM), x-ray diffraction (XRD), magnetic force microscopy (MFM), and micromagnetic simulation were conducted. The results demonstrate that electric-field-induced strain enables precise control of SOT-induced magnetization switching with significantly reduced energy consumption, making it highly suitable for next-generation spin logic devices.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3