Root-associated fungal community reflects host spatial co-occurrence patterns in a subtropical forest

Author:

Kuang JialiangORCID,Han ShunORCID,Chen YongjianORCID,Bates Colin T.ORCID,Wang PandengORCID,Shu WenshengORCID

Abstract

AbstractPlant roots harbor and interact with diverse fungal species. By changing these belowground fungal communities, focal plants can affect the performance of surrounding individuals and the outcome of coexistence. Although highly host related, the roles of these root-associated fungal communities per se in host plant spatial co-occurrence is largely unknown. Here, we evaluated the host dependency of root-associated communities for 39-plant species spatially mapped throughout a 50-ha subtropical forest plot with relevant environmental properties. In addition, we explored whether the differentiation in root fungal associations among plant species can reflect their observed co-occurrence patterns. We demonstrated a strong host-dependency by discriminating the differentiation of root-associated fungal communities regardless of background soil heterogeneity. Furthermore, Random Forest modeling indicated that these nonrandom root fungal associations significantly increased our ability to explain spatial co-occurrence patterns, and to a greater degree than the relative abundance, phylogenetic relatedness, and functional traits of the host plants. Our results further suggested that plants harbor more abundant shared, “generalist” pathogens are likely segregated, while hosting more abundant unique, “specialist” ectomycorrhizal fungi might be an important strategy for promoting spatial aggregation, particularly between early established trees and the heterospecific adults. Together, we provide a conceptual and testable approach to integrate this host-dependent root fungal “fingerprinting” into the plant diversity patterns. We highlight that this approach is complementary to the classic cultivation-based scheme and can deepen our understanding of the community-level effect from overall fungi and its contribution to the pairwise plant dynamics in local species-rich communities.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3