Initial community composition determines the long-term dynamics of a microbial cross-feeding interaction by modulating niche availability

Author:

Dolinšek Jan,Ramoneda Josep,Johnson David R.ORCID

Abstract

AbstractMulti-step substrate consumption pathways can promote microbial biodiversity via cross-feeding. If one cell type preferentially consumes a primary substrate rather than the subsequently formed intermediates, then other cell types can specialize in consuming the intermediates. While this mechanism for promoting biodiversity is established, predicting the long-term persistence of such cross-feeding interactions remains challenging. Under what conditions will the interaction (and thus biodiversity) persist or disappear? To address this question, we propagated co-cultures of two isogenic strains of the bacterium Pseudomonas stutzeri. One completely reduces nitrate to nitrogen gas but preferentially reduces nitrate rather than nitrite (referred to as the generalist), while the other only reduces nitrite to nitrogen gas (referred to as the specialist). We found that the two strains coexist via nitrite cross-feeding when grown together, but the initial ratio of specialist-to-generalist (rS/G) determines the long-term dynamics of the co-culture. Co-cultures with large initial rS/Gs converge to the same rS/G and persist thereafter. Co-cultures with small initial rS/Gs also converge to the same rS/G but then become increasingly dominated by the generalist. The likely cause of these different dynamics is that the initial rS/G determines the initial environment, which in turn determines the initial selection pressures and phenotypes acquired by the generalist. Our results demonstrate that initial community composition controls the long-term dynamics and persistence of a cross-feeding interaction, and is therefore an important factor for community development and for engineering communities to achieve desired outcomes.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3