The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota

Author:

Lagkouvardos IliasORCID,Pukall Rüdiger,Abt Birte,Foesel Bärbel U.,Meier-Kolthoff Jan P.ORCID,Kumar Neeraj,Bresciani Anne,Martínez Inés,Just Sarah,Ziegler Caroline,Brugiroux Sandrine,Garzetti Debora,Wenning Mareike,Bui Thi P. N.,Wang Jun,Hugenholtz Floor,Plugge Caroline M.ORCID,Peterson Daniel A.,Hornef Mathias W.,Baines John F.,Smidt Hauke,Walter Jens,Kristiansen Karsten,Nielsen Henrik B.,Haller Dirk,Overmann JörgORCID,Stecher Bärbel,Clavel Thomas

Abstract

Abstract Intestinal bacteria influence mammalian physiology, but many types of bacteria are still uncharacterized. Moreover, reference strains of mouse gut bacteria are not easily available, although mouse models are extensively used in medical research. These are major limitations for the investigation of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (miBC), a public repository of bacterial strains and associated genomes from the mouse gut, and studied host-specificity of colonization and sequence-based relevance of the resource. The collection includes several strains representing novel species, genera and even one family. Genomic analyses showed that certain species are specific to the mouse intestine and that a minimal consortium of 18 strains covered 50–75% of the known functional potential of metagenomes. The present work will sustain future research on microbiota–host interactions in health and disease, as it will facilitate targeted colonization and molecular studies. The resource is available at www.dsmz.de/miBC.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Microbiology (medical),Genetics,Applied Microbiology and Biotechnology,Immunology,Microbiology

Cited by 348 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3