On detailed representation of flood defences and flow-wave coupling in coastal flood modelling

Author:

Duong Trang Minh,Meynadier Remi,Ranasinghe Roshanka,Loaiza Manuel Andres Diaz,Bricker Jeremy D.,Reyns Johan,Luijendijk Arjen,Bamunawala Janaka

Abstract

AbstractCoastal flooding is projected to become more severe over the 21st century, necessitating effective adaptation, which in turn requires detailed local scale information that can only be provided by detailed numerical modelling. The current lack of information on flood protection measures and the high resource requirements of traditional hydrodynamic models presents concurrent challenges for detailed coastal flood modelling. But how comprehensive do the representation of coastal flood defences and hydrodynamic forcing need to be for adequately accurate modelling of coastal flooding? Here, we attempt to answer this question through strategic numerical simulations of the flooding that occurred at Île de Ré (France) during the Xynthia storm (2010), using the flexible mesh model Delft3D FM, with an over-land grid resolution of ~10 m. The model is validated against the flood extents observed in Île de Ré during Xynthia. We use three levels of detail in flood defence representation: a 5 m resolution DEM (i.e. base case DEM), the same 5 m DEM augmented with defences extracted from a 1 m DEM and Google Earth images (i.e. moderately augmented DEM), and the moderately augmented DEM further augmented with in-situ measurements of flood defences (i.e. highly augmented DEM). Simulations with these three DEMs are performed with and without flow-wave coupling (thus, 6 simulations in total), and results are analysed in terms of four flood indicators: maximum flood depths, flood extents, flood current velocities and flood damages. Our analysis indicates that both detailed representation of flood defences and the inclusion of waves have substantial effects on coastal flood modelling at local scale, with the former having a more pronounced effect. The return on the investment in implementing highly detailed in-situ measurements to represent flood defences appears to be low in this case, and adequately accurate results are obtained with a moderately augmented DEM. The combined effect of using the moderately augmented DEM together with waves, relative to using the base case DEM without waves, is to decrease maximum flood depths (up to 2 m), flood extent (by ~10%), maximum current velocities (in ~50% flooded area) and total flood damage (by ~27% or ~€ 188 million).

Publisher

Springer Science and Business Media LLC

Reference45 articles.

1. NOAA Costliest U.S. Tropical Cyclones. Available at: https://www.ncei.noaa.gov/access/billions/dcmi.pdf (2022).

2. Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H. & Ward, P. J. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 7, 11969 (2016).

3. Tiggeloven, T. et al. Global-scale benefit–cost analysis of coastal flood adaptation to different flood risk drivers using structural measures. Nat. Hazards Earth Syst. Sci. 20, 1025–1044 (2020).

4. IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, (eds. V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al.) (Cambridge University Press, 2021).

5. Ranasinghe, R. et al. Climate Change Information for Regional Impact and for Risk Assessment. In: Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3