Unconventional charge order and superconductivity in kagome-lattice systems as seen by muon-spin rotation

Author:

Guguchia Z.ORCID,Khasanov R.ORCID,Luetkens H.ORCID

Abstract

AbstractKagome lattices are intriguing and rich platforms for studying the intertwining of topology, electron correlation, and magnetism. These materials have been subject to tremendous experimental and theoretical studies not only due to their exciting physical properties but also as systems that may solve critical technological problems. We will review recent experimental progress on superconductivity and magnetic fingerprints of charge order in several kagome-lattice systems from the local-magnetic probe point of view by utilizing muon-spin rotation under extreme conditions, i.e., hydrostatic pressure, ultra low temperature and high magnetic field. The systems include: (1) The series of compounds AV3Sb5 (A = K, Rb, Cs) with V kagome lattice which form the first kagome-based family that exhibits a cascade of symmetry-broken electronic orders, including charge order and superconductivity. In these systems, we find a time-reversal symmetry-breaking charge ordered state and tunable unconventional time-reversal symmetry-breaking superconductivity. (2) The system LaRu3Si2 with distorted kagome layers of Ru, in which our experiments and calculations taken together point to nodeless moderate coupling superconductivity. It was also found that the electron-phonon coupling alone can only explain a small fraction of Tc from calculations, which suggests other factors enhancing Tc such as the correlation effect from the kagome flat band, the van Hove point on the kagome lattice, and the high density of states from the narrow kagome bands. (3) CeRu2 with a pristine Ru kagome lattice, which we classify as an exceedingly rare nodeless (with anisotropic s-wave gap symmetry) magnetic kagome superconductor.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3