Abstract
AbstractTmVO4 exhibits ferroquadrupolar order of the Tm 4f electronic orbitals at low temperatures, and is a model system for Ising nematicity. A magnetic field oriented along the c-axis constitutes a transverse effective field for the quadrupolar order parameter, continuously tuning the system to a quantum phase transition as the field is increased from zero. In contrast, in-plane magnetic fields couple to the order parameter only at second order, such that orienting along the primary axes of the quadrupole order results in an effective longitudinal field, whereas orienting at 45 degrees results in a second effective transverse field. Not only do in-plane fields engender a marked in-plane anisotropy of the critical magnetic and quadrupole fluctuations above the ferroquadrupolar ordering temperature, but in-plane transverse fields initially enhance the ferroquadrupolar order, before eventually suppressing it, an effect that we attribute to admixing of the higher crystalline electric field levels.
Funder
National Science Foundation
Gordon and Betty Moore Foundation
Swiss National Science Foundation | National Center of Competence in Research Materials' Revolution: Computational Design and Discovery of Novel Materials
University of Glamorgan
Stanford Geballe Laboratory for Advanced Materials (GLAM) Postdoctoral Fellowship program
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献