Acceleration of HSP70 and HSC70 Heat Shock Gene Expression following Transient Ischemia in the Preconditioned Gerbil Hippocampus

Author:

Aoki M.1,Abe K.1,Kawagoe J.1,Nakamura S.1,Kogure K.1

Affiliation:

1. Department of Neurology, Institute for Brain Diseases, Tohoku University School of Medicine, Sendai, Japan

Abstract

To evaluate the mechanism of tolerance to ischemia, inductions of heat shock protein (HSP) 70 and heat shock cognate protein (HSC) 70 mRNAs in gerbil hippocampus were compared with in situ hybridization between cases of a single 3.5-min period of forebrain ischemia and a 3.5-min period of ischemia 2 days after 2-min pretreatment with ischemia. Immunohistochemistry for HSP70 protein and morphological studies were also performed in the same brains up to 7 days after the reperfusion. Following a single 3.5-min period of ischemia, HSP70 and HSC70 mRNAs were induced in all hippocampal cells. However, the hippocampal CA1 cells produced only a minimum of HSP70 protein, and the cells were almost lost by 7 days. Following 3.5 min of ischemia after 2-min pretreatment, large populations of the CA1 cells survived at 7 days. The peak time of the HSP70 and HSC70 mRNA induction shifted to an earlier period of reperfusion in all hippocampal cells as compared with the case of a single episode of ischemia. The peak of HSP70 and HSC70 mRNA induction shifted from 1 day to 3 h in the CA1 cells. The CA1 cells produced strongly immunoreactive HSP70 from 3 hr to 2 days. These results suggest that pretreatment with an initial period of ischemia (for 2 min) accelerated HSP70 and HSC70 gene expression at the transcriptional level, ameliorated the translational disturbance of HSP70 mRNA to protein, and saved the CA1 cells from subsequent lethal ischemia (for 3.5 min). These changes of heat shock gene expression might play important roles in the acquisition of ischemic tolerance of hippocampal CA1 neurons.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3