Regulation of Extra- and Intracellular pH in the Brain in Severe Hypoglycemia

Author:

Pelligrino Dale1,Siesjö Bo K.1

Affiliation:

1. Laboratory for Experimental Brain Research, University of Lund, Lund, Sweden

Abstract

Severe hypoglycemia is associated with a marked curtailment of cerebral glucose supply and with consumption of endogenous carbohydrate metabolites and amino acids, many of which exist as anions of acids. Since metabolic control of intracellular pH in acute hypo- and hypercapnia seems to be dependent on the production and consumption of metabolic acids, it must be suspected that intracellular pH in the brain is poorly regulated in hypoglycemic animals. We induced hypocapnia (Paco2about 15 mm Hg) and hypercapnia (Paco2about 90 mm Hg) in insulin-injected animals in “precoma” (EEG pattern of slow waves, polyspikes) and “coma” (cessation of EEG activity) and measured CSF and intracellular acid-base changes using the CO2method.The induced hypoglycemia did not measurably alter CSF acid-base changes from the normal during hypercapnia, but it did impair CSF pH regulation in hypocapnia. Animals in precoma showed an unchanged cerebral energy state during both hypo- and hypercapnia. Regulation of intracellular pH was not measurably affected in hypercapnia but was reduced in hypocapnia. These results could be accounted for by a reduced ability of the hypoglycemic animals to produce metabolic acids in response to the decrease in Pco2, while the capacity to “consume” acids was largely retained.In comatose animals, cerebral energy state was held at normocapnic levels during hypercapnia but deteriorated during hypocapnia. In the latter condition, the reduction in adenylate energy charge correlated to a decrease in blood pressure. The capacity to alter metabolic acid levels was abolished. In spite of this, hypocapnia was associated with a marked rise in intracellular pH, in some animals to values of about 7.7 (control, 7.0), and hypercapnia caused only very moderate reduction in intracellular pH. It is proposed that the excessive increase in intracellular pH during hypocapnia was due to hypotension-induced energy failure with subsequent depolarization of cells and passive equilibration of HCO3(or H+) across the cell membranes. In hypercapnia, the influx of HCO3into cells was unrelated to further deterioration of cerebral energy state but could possibly have been caused by CO2-induced depolarization and/or increased cell membrane permeability to HCO3/H+ions.It is concluded that severe hypoglycemia disrupts intracellular pH regulation in the brain and that hypocapnia combined with moderate hypotension leads to an excessive intracellular alkalosis of potential importance for the development of cell damage.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clinical profile, etiology, outcome and new-onset diabetes: A SARI case series;Journal of Clinical Intensive Care and Medicine;2022-06-28

2. Glucose;Volpe's Neurology of the Newborn;2018

3. Novel hypoglycemic injury mechanism: N-methyl-D-aspartate receptor-mediated white matter damage;Annals of Neurology;2014-03-26

4. The functional state of rat brain mitochondria at the convulsive hypoglycemic syndrome and different ways of its correction;Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry;2011-05-24

5. Diffusion-Weighted Imaging of Hyperacute Cerebral Hypoglycemia;American Journal of Neuroradiology;2011-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3