Delayed Neuronal Recovery and Neuronal Death in Rat Hippocampus following Severe Cerebral Ischemia: Possible Relationship to Abnormalities in Neuronal Processes

Author:

Petito C. K.1,Pulsinelli W. A.1

Affiliation:

1. Departments of Pathology (Neuropathology) and Neurology, The New York Hospital-Cornell University Medical College, New York, New York, U.S.A.

Abstract

Mechanisms involved in the postischemic delay in neuronal recovery or death in rat hippocampus were evaluated by light and electron microscopy at 3, 15, 30, and 120 min and 24, 36, 48, and 72 h following severe cerebral ischemia that was produced by permanent occlusion of the vertebral arteries and 30-min occlusion of the common carotid arteries. During the early postischemic period, neurons in the Ca1 and Ca3 regions both showed transient mitochondrial swelling followed by the disaggregation of polyribosomes, decrease in rough endoplasmic reticulum (RER), loss of Golgi apparatus (GA) cisterns, and decrease in GA vesicles. Recovery of these organelles in Ca3 neurons was first noted between 24 and 36 h and was accompanied by a marked proliferation of smooth endoplasmic reticulum (SER). Many Ca1 neurons initially recovered between 24 and 36 h, but subsequent cell death at 48–72 h was often preceded by peripheral chromatolysis, constriction and shrinkage of the proximal dendrites, and cytoplasmic dilatation that was continuous with focal expansion of RER cisterns. Because SER accumulates in resistant Ca3 neurons and proximal neuronal processes are damaged in vulnerable Ca1 neurons, we hypothesize that delayed cell recovery or death in vulnerable and resistant postischemic hippocampal neurons is related to abnormalities in neuronal processes.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3