Cortical Negative DC Deflections following Middle Cerebral Artery Occlusion and KCl-Induced Spreading Depression: Effect on Blood Flow, Tissue Oxygenation, and Electroencephalogram

Author:

Back T.1,Kohno K.1,Hossmann K.-A.1

Affiliation:

1. Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany

Abstract

In the periphery of ischemic brain lesions, transient spreading depression-like direct current (DC) deflections occur that may be of pathophysiological importance for determining the volume of the ischemic infarct. The effect of these deflections on cerebral blood flow, tissue oxygen tension, and electrophysiology was studied in rats submitted to intraluminal thread occlusion of the middle cerebral artery (MCA) and compared with the changes following potassium chloride (KCl)-induced spreading depression of intact animals. Immediately after MCA occlusion, cortical laser–Doppler flow (LDF) in the periphery of the MCA territory sharply decreased to 35 ± 14% of control (mean ± SD; p < 0.05), tissue Po2 declined from 28 ± 4 to 21 ± 3 mm Hg (p < 0.05), and EEG power fell to ∼80% of control. During 7-h occlusion, 3–11 DC deflections with a mean duration of 5.2 ± 4.8 min occurred at irregular intervals, and EEG power gradually declined to 66 ± 16% of control (p < 0.05). During the passage of DC deflections, LDF did not change, but Po2 further declined to 19 ± 4 mm Hg (p < 0.05). KCl-induced depolarizations of intact rats were significantly shorter (1.4 ± 0.5 min; p < 0.05) and were accompanied by a 43% increase in LDF (p < 0.05) and a slight but significant increase in tissue Po2 from 22 ± 4 to 25 ± 4 mm Hg (p < 0.05). The comparison of periinfarct and KCl-induced depolarizations demonstrates that oxygen requirements are not coupled to an appropriate flow response in the periinfarct zone with severely reduced blood flow. The resulting episodes of relative hypoxia could explain the previously documented relationship between the number of depolarizations and infarct volume.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3