Abstract
AbstractKnown locally as the water mountain, for millennia Japan’s iconic Mt Fuji has provided safe drinking water to millions of people via a vast network of groundwater and freshwater springs. Groundwater, which is recharged at high elevations, flows down Fuji’s flanks within three basaltic aquifers, ultimately forming countless pristine freshwater springs among Fuji’s foothills. Here we challenge the current conceptual model of Fuji being a simple system of laminar groundwater flow with little to no vertical exchange between its three aquifers. This model contrasts strongly with Fuji’s extreme tectonic instability due to its unique location on top of the only known continental trench–trench–trench triple junction, its complex geology and its unusual microbial spring water communities. On the basis of a unique combination of microbial environmental DNA, vanadium and helium tracers, we provide evidence for prevailing deep circulation and a previously unknown deep groundwater contribution to Fuji’s freshwater springs. The most substantial deep groundwater upwelling has been found along Japan’s most tectonically active region, the Fujikawa-kako Fault Zone. Our findings broaden the hydrogeological understanding of Fuji and demonstrate the vast potential of combining environmental DNA, on-site noble gas and trace element analyses for groundwater science.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Ministry of Land, Infrastructure, Transport and Tourism
Publisher
Springer Science and Business Media LLC
Reference169 articles.
1. Chakraborty, A. & Jones, T. E. in Natural Heritage of Japan Geoheritage, Geoparks and Geotourism (Conservation and Management Series) (eds Chakraborty, A. et al.) Ch. 16 (Springer, 2018).
2. Nakamura, K. Possible nascent trench along the eastern Japan Sea as the convergent boundary between Eurasian and North American plates (in Japanese). Bull. Earthq. Res. Inst. 58, 711–722 (1983).
3. Seno, T. Is northern Honshu a microplate? Tectonophysics 115, 177–196 (1985).
4. Ogawa, Y., Takami, Y. & Takazawa, S. in Formation and Applications of the Sedimentary Record in Arc Collision Zones Vol. 436 (eds Draut, A. E. at al.) 155–170 (Geological Society of America, 2008).
5. Tsuya, H. & Morimoto, R. Types of volcanic eruptions in Japan (in Japanese). Bull. Volcanol. 26, 209–222 (1963).
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献