A twilight for the complete nitrogen removal via synergistic partial-denitrification, anammox, and DNRA process

Author:

Ahmad Hafiz Adeel,Guo Beibei,Zhuang Xuming,Zhao Yiyi,Ahmad Shakeel,Lee Taeho,Zhu Jiegao,Dong YuliangORCID,Ni Shou-QingORCID

Abstract

AbstractThe prolonged start-up time and low total nitrogen removal of anammox hinder its full-scale application. Herein, application of nano-zerovalent iron and low strength magnetic field in sole and in combination to abbreviate the start-up period and long-term process stability of anammox was carried out. The reactor’s anammox start-up with the only magnetic field (R3) was 34 days, saving 43.3% time compared with the control. The increase of nitrogen removal efficiency over the control was 43.7% during the start-up period. However, the reactor with the coupled treatment of nano-zerovalent iron and magnetic field (R4) was more stable with higher nitrogen removal efficiency (80%) at high nitrogen loading (5.28 kg/m3/d). Anammox gene copy number in R4 was highest after 180 days of culture, followed by nano-zerovalent iron (R2) and R3 reactor. The functional genes of denitrifying bacteria (nirK and nirS) were also identified in all reactors with higher copy numbers in R2, followed by R4 and R3. Furthermore, high throughput analysis showed that the Thauera performing partial denitrification, Ignavibacterium performing dissimilatory nitrate reduction to ammonium or nitrite were also present in all reactors, more abundant in R4, confirming that the higher nitrogen removal efficiency in R4 was attributed to the synergistic relationship of other nitrogenous genera with anammox. The higher abundance of PD and DNRA in the reactor with the coupled treatment of nano-zero valent iron and magnetic field, achieved in this research, opens the opportunity of complete nitrogen removal via synergistic partial-denitrification, anammox, and DNRA (SPDAD) process.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3