Air quality and attributable mortality among city dwellers in Kampala, Uganda: results from 4 years of continuous PM2.5 concentration monitoring using BAM 1022 reference instrument

Author:

Atuyambe Lynn M.ORCID,Etajak Samuel,Walyawula Felix,Kasasa Simon,Nyabigambo Agnes,Bazeyo William,Wipfli Heather,Samet Jonathan M.,Berhane Kiros T.

Abstract

Abstract Background Air pollution is a known risk factor for non-communicable diseases that causes substantial premature death globally. Rapid urban growth, burning of biomass and solid waste, unpaved sections of the road network, rising numbers of vehicles, some with highly polluting engines, contribute to the poor air quality in Kampala. Objective To provide evidence-based estimates of air pollution attributable mortality in Kampala city, with focus on ambient fine particulate matter (PM2.5). Methods We utilized a time series design and prospectively collected data on daily ambient PM2.5 concentration levels in micrograms per cubic meter (μg/m3) using a Beta Attenuation Monitor (BAM-1022) in Kampala city, Uganda. We combined the PM2.5 data with all-cause mortality data obtained from the Uganda Bureau of Statistics and the Ministry of Health in Kampala. We calculated attributable risk estimates for mortality using the WHO AirQ+ tools. Results Overall, the annual average concentration for PM2.5 for the period of 4 years, 2018–2021, was 39 μg/m3. There was seasonal variation, with the rainy season months (March–June and October–December) having lower values. PM2.5 concentrations tend to be highest in the morning (09.00 h) and in the evening (21.00 h.) likely due to increased vehicular emissions as well as the influence of weather patterns (atmospheric temperature, relative humidity and wind). Saturday has the most pollution (daily average over 4 years of 41.2 μg/m3). Regarding attributable risk, we found that of all the deaths in Kampala, 2777 (19.3%), 2136 (17.9%), 1281 (17.9%) and 1063 (19.8%) were attributable to long-term exposure to air pollution (i.e., exposure to PM2.5 concentrations above the WHO annual guideline of 5 μg/m3) from 2018 to 2021, respectively. For the 4 years and considering the WHO annual guideline as the reference, there were 7257 air pollution-related deaths in Kampala city. Impact Our study is the first to estimate air pollution attributable deaths in Kampala city considering the target as the WHO annual guideline value for PM2.5 of 5 μg/m3. Our monitoring data show that fine particulate matter air pollution in Kampala is above the WHO Air Quality Guideline value, likely resulting in substantial adverse health effects and premature death. While further monitoring is necessary, there is a clear need for control measures to improve air quality in Kampala city.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3