A data-driven approach to identifying PFAS water sampling priorities in Colorado, United States

Author:

Barton Kelsey E.ORCID,Anthamatten Peter J.,Adgate John L.,McKenzie Lisa M.,Starling Anne P.,Berg Kevin,Murphy Robert C.,Richardson Kristy

Abstract

Abstract Background Per and polyfluoroalkyl substances (PFAS), a class of environmentally and biologically persistent chemicals, have been used across many industries since the middle of the 20th century. Some PFAS have been linked to adverse health effects. Objective Our objective was to incorporate known and potential PFAS sources, physical characteristics of the environment, and existing PFAS water sampling results into a PFAS risk prediction map that may be used to develop a PFAS water sampling prioritization plan for the Colorado Department of Public Health and Environment (CDPHE). Methods We used random forest classification to develop a predictive surface of potential groundwater contamination from two PFAS, perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). The model predicted PFAS risk at locations without sampling data into one of three risk categories after being “trained” with existing PFAS water sampling data. We used prediction results, variable importance ranking, and population characteristics to develop recommendations for sampling prioritization. Results Sensitivity and precision ranged from 58% to 90% in the final models, depending on the risk category. The model and prioritization approach identified private wells in specific census blocks, as well as schools, mobile home parks, and public water systems that rely on groundwater as priority sampling locations. We also identified data gaps including areas of the state with limited sampling and potential source types that need further investigation. Impact statement This work uses random forest classification to predict the risk of groundwater contamination from two per- and polyfluoroalkyl substances (PFAS) across the state of Colorado, United States. We developed the prediction model using data on known and potential PFAS sources and physical characteristics of the environment, and “trained” the model using existing PFAS water sampling results. This data-driven approach identifies opportunities for PFAS water sampling prioritization as well as information gaps that, if filled, could improve model predictions. This work provides decision-makers information to effectively use limited resources towards protection of populations most susceptible to the impacts of PFAS exposure.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3