Immune evasion in lung metastasis of leiomyosarcoma: upregulation of EPCAM inhibits CD8+ T cell infiltration

Author:

Kanahori Masaya,Shimada Eijiro,Matsumoto Yoshihiro,Endo MakotoORCID,Fujiwara Toshifumi,Nabeshima Akira,Hirose Takeshi,Kawaguchi Kengo,Oyama Ryunosuke,Oda Yoshinao,Nakashima Yasuharu

Abstract

Abstract Background Leiomyosarcomas are among the most common histological types of soft tissue sarcoma (STS), with no effective treatment available for advanced patients. Lung metastasis, the most common site of distant metastasis, is the primary prognostic factor. We analysed the immune environment targeting lung metastasis of STS to explore new targets for immunotherapy. Methods We analysed the immune environment of primary and lung metastases in 38 patients with STS using immunohistochemistry. Next, we performed gene expression analyses on primary and lung metastatic tissues from six patients with leiomyosarcoma. Using human leiomyosarcoma cell lines, the effects of the identified genes on immune cells were assessed in vitro. Results Immunohistochemistry showed a significant decrease in CD8+ cells in the lung metastases of leiomyosarcoma. Among the genes upregulated in lung metastases, epithelial cellular adhesion molecule (EPCAM) showed the strongest negative correlation with the number of CD8+ cells. Transwell assay results showed that the migration of CD8+ T cells was significantly increased in the conditioned media obtained after inhibition or knock down of EPCAM. Conclusions EPCAM was upregulated in lung metastases of leiomyosarcoma, suggesting inhibition of CD8+ T cell migration. Our findings suggest that EPCAM could serve as a potential novel therapeutic target for leiomyosarcoma.

Funder

MEXT | Japan Society for the Promotion of Science

Kyushu University

Japanese Orthopaedic Association

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3