Abstract
AbstractAccess to safely managed drinking water (SMDW) remains a global challenge, and affects 2.2 billion people1,2. Solar-driven atmospheric water harvesting (AWH) devices with continuous cycling may accelerate progress by enabling decentralized extraction of water from air3–6, but low specific yields (SY) and low daytime relative humidity (RH) have raised questions about their performance (in litres of water output per day)7–11. However, to our knowledge, no analysis has mapped the global potential of AWH12 despite favourable conditions in tropical regions, where two-thirds of people without SMDW live2. Here we show that AWH could provide SMDW for a billion people. Our assessment—using Google Earth Engine13—introduces a hypothetical 1-metre-square device with a SY profile of 0.2 to 2.5 litres per kilowatt-hour (0.1 to 1.25 litres per kilowatt-hour for a 2-metre-square device) at 30% to 90% RH, respectively. Such a device could meet a target average daily drinking water requirement of 5 litres per day per person14. We plot the impact potential of existing devices and new sorbent classes, which suggests that these targets could be met with continued technological development, and well within thermodynamic limits. Indeed, these performance targets have been achieved experimentally in demonstrations of sorbent materials15–17. Our tools can inform design trade-offs for atmospheric water harvesting devices that maximize global impact, alongside ongoing efforts to meet Sustainable Development Goals (SDGs) with existing technologies.
Publisher
Springer Science and Business Media LLC
Reference66 articles.
1. Bain, R., Johnston, R., Mitis, F., Chatterley, C. & Slaymaker, T. Establishing Sustainable Development Goal baselines for household drinking water, sanitation and hygiene services. Water 10, 1711 (2018).
2. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines (World Health Organization and the United Nations Children’s Fund, 2017).
3. Hanikel, N. et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent. Sci. 5, 1699–1706 (2019).
4. Li, R., Shi, Y., Wu, M., Hong, S. & Wang, P. Improving atmospheric water production yield: enabling multiple water harvesting cycles with nano sorbent. Nano Energy 67, 104255 (2020).
5. Qi, H. et al. An interfacial solar‐driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption–desorption. Adv. Mater. 31, 1903378 (2019).
Cited by
186 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献