Functional connectomics reveals general wiring rule in mouse visual cortex

Author:

Ding ZhuokunORCID,Fahey Paul G.,Papadopoulos Stelios,Wang Eric Y.ORCID,Celii Brendan,Papadopoulos ChristosORCID,Chang Andersen,Kunin Alexander B.ORCID,Tran Dat,Fu Jiakun,Ding Zhiwei,Patel Saumil,Ntanavara LydiaORCID,Froebe RachelORCID,Ponder Kayla,Muhammad Taliah,Bae J. Alexander,Bodor Agnes L.,Brittain Derrick,Buchanan JoAnnORCID,Bumbarger Daniel J.,Castro Manuel A.,Cobos Erick,Dorkenwald Sven,Elabbady Leila,Halageri Akhilesh,Jia Zhen,Jordan Chris,Kapner Dan,Kemnitz NicoORCID,Kinn Sam,Lee Kisuk,Li KaiORCID,Lu Ran,Macrina Thomas,Mahalingam GayathriORCID,Mitchell EricORCID,Mondal Shanka SubhraORCID,Mu Shang,Nehoran BarakORCID,Popovych Sergiy,Schneider-Mizell Casey M.ORCID,Silversmith William,Takeno MarcORCID,Torres RusselORCID,Turner Nicholas L.,Wong William,Wu Jingpeng,Yin Wenjing,Yu Szi-chiehORCID,Yatsenko DimitriORCID,Froudarakis Emmanouil,Sinz FabianORCID,Josić Krešimir,Rosenbaum RobertORCID,Seung H. SebastianORCID,Collman ForrestORCID,da Costa Nuno MaçaricoORCID,Reid R. ClayORCID,Walker Edgar Y.,Pitkow XaqORCID,Reimer JacobORCID,Tolias Andreas S.ORCID

Abstract

Abstract Understanding the relationship between circuit connectivity and function is crucial for uncovering how the brain computes. In mouse primary visual cortex, excitatory neurons with similar response properties are more likely to be synaptically connected1–8; however, broader connectivity rules remain unknown. Here we leverage the millimetre-scale MICrONS dataset to analyse synaptic connectivity and functional properties of neurons across cortical layers and areas. Our results reveal that neurons with similar response properties are preferentially connected within and across layers and areas—including feedback connections—supporting the universality of ‘like-to-like’ connectivity across the visual hierarchy. Using a validated digital twin model, we separated neuronal tuning into feature (what neurons respond to) and spatial (receptive field location) components. We found that only the feature component predicts fine-scale synaptic connections beyond what could be explained by the proximity of axons and dendrites. We also discovered a higher-order rule whereby postsynaptic neuron cohorts downstream of presynaptic cells show greater functional similarity than predicted by a pairwise like-to-like rule. Recurrent neural networks trained on a simple classification task develop connectivity patterns that mirror both pairwise and higher-order rules, with magnitudes similar to those in MICrONS data. Ablation studies in these recurrent neural networks reveal that disrupting like-to-like connections impairs performance more than disrupting random connections. These findings suggest that these connectivity principles may have a functional role in sensory processing and learning, highlighting shared principles between biological and artificial systems.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3