Mode switching in organisms for solving explore-versus-exploit problems

Author:

Biswas DebojyotiORCID,Lamperski Andrew,Yang YuORCID,Hoffman Kathleen,Guckenheimer JohnORCID,Fortune Eric S.ORCID,Cowan Noah J.ORCID

Abstract

AbstractTrade-offs between producing costly movements for gathering information (‘explore’) and using previously acquired information to achieve a goal (‘exploit’) arise in a wide variety of problems, including foraging, reinforcement learning and sensorimotor control. Determining the optimal balance between exploration and exploitation is computationally intractable, necessitating heuristic solutions. Here we show that the electric fish Eigenmannia virescens uses a salience-dependent mode-switching strategy to solve the explore–exploit conflict during a refuge-tracking task in which the same category of movement (fore-aft swimming) is used for both gathering information and achieving task goals. The fish produced distinctive non-Gaussian distributions of movement velocities characterized by sharp peaks for slower, task-oriented ‘exploit’ movements and broad shoulders for faster ‘explore’ movements. The measures of non-normality increased with increased sensory salience, corresponding to a decrease in the prevalence of fast explore movements. We found the same sensory salience-dependent mode-switching behaviour across ten phylogenetically diverse organisms, from amoebae to humans, performing tasks such as postural balance and target tracking. We propose a state-uncertainty-based mode-switching heuristic that reproduces the distinctive velocity distribution, rationalizes modulation by sensory salience and outperforms the classic persistent excitation approach while using less energy. This mode-switching heuristic provides insights into purposeful exploratory behaviours in organisms, as well as a framework for more efficient state estimation and control of robots.

Funder

United States Department of Defense | United States Navy | Office of Naval Research

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3