Author:
Cao Bei,Messinger David W.
Funder
Xerox Chair in Imaging Science
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. Manolakis, D. et al. Hyperspectral image processing for automatic target detection applications. Linc. Lab. J. 14, 79–116 (2003).
2. Song, A. & Kim, Y. Deep learning-based hyperspectral image classification with application to environmental geographic information systems. Korean J. Remote Sens. 33, 1061–1073 (2017).
3. Ishida, T. et al. A novel approach for vegetation classification using uav-based hyperspectral imaging. Comput. Electron. Agric. 144, 80–85 (2018).
4. Vali, A., Comai, S. & Matteucci, M. Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: a review. Remote Sens. 12, 2495 (2020).
5. Jiang, J. et al. Superpca: A superpixelwise pca approach for unsupervised feature extraction of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 56, 4581–4593 (2018).