Author:
Raza Sana,Rajak Sangam,Yen Paul M.,Sinha Rohit A.
Abstract
AbstractMetabolic dysfunction-associated steatotic liver disease (MASLD) originates from a homeostatic imbalance in hepatic lipid metabolism. Increased fat deposition in the liver of people suffering from MASLD predisposes them to develop further metabolic derangements, including diabetes mellitus, metabolic dysfunction-associated steatohepatitis (MASH), and other end-stage liver diseases. Unfortunately, only limited pharmacological therapies exist for MASLD to date. Autophagy, a cellular catabolic process, has emerged as a primary mechanism of lipid metabolism in mammalian hepatocytes. Furthermore, preclinical studies with autophagy modulators have shown promising results in resolving MASLD and mitigating its progress into deleterious liver pathologies. In this review, we discuss our current understanding of autophagy-mediated hepatic lipid metabolism, its therapeutic modulation for MASLD treatment, and current limitations and scope for clinical translation.
Funder
Wellcome Trust DBT India Alliance
Publisher
Springer Science and Business Media LLC
Reference119 articles.
1. Hutchison, A. L., Tavaglione, F., Romeo, S. & Charlton, M. Endocrine aspects of metabolic dysfunction-associated steatotic liver disease (MASLD): beyond insulin resistance. J. Hepatol. 79, 1524–1541 (2023).
2. Targher, G., Byrne, C. D. & Tilg, H. MASLD: a systemic metabolic disorder with cardiovascular and malignant complications. Gut 73, 691–702 (2024).
3. Younossi, Z. M. et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 77, 1335–1347 (2023).
4. Ipsen, D. H., Lykkesfeldt, J. & Tveden-Nyborg, P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 75, 3313–3327 (2018).
5. Mashek, D. G. Hepatic lipid droplets: a balancing act between energy storage and metabolic dysfunction in NAFLD. Mol. Metab. 50, 101115 (2021).