An updated PREDICT breast cancer prognostic model including the benefits and harms of radiotherapy

Author:

Grootes Isabelle,Wishart Gordon C.,Pharoah Paul David PeterORCID

Abstract

AbstractPREDICT Breast (www.breast .predict.nhs.uk) is a prognostication tool for early invasive breast cancer. The current version was based on cases diagnosed in 1999–2003 and did not incorporate the benefits of radiotherapy or the harms associated with therapy. Since then, there has been a substantial improvement in the outcomes for breast cancer cases. The aim of this study was to update PREDICT Breast to ensure that the underlying model is appropriate for contemporary patients. Data from the England National Cancer Registration and Advisory Service for invasive breast cancer cases diagnosed 2000–17 were used for model development and validation. Model development was based on 35,474 cases diagnosed and registered by the Eastern Cancer Registry. A Cox model was used to estimate the prognostic effects of the year of diagnosis, age at diagnosis, tumour size, tumour grade and number of positive nodes. Separate models were developed for ER-positive and ER-negative disease. Data on 32,408 cases from the West Midlands Cancer Registry and 100,551 cases from other cancer registries were used for validation. The new model was well-calibrated; predicted breast cancer deaths at 5-, 10- and 15-year were within 10 per cent of the observed validation data. Discrimination was also good: The AUC for 15-year breast cancer survival was 0.809 in the West Midlands data set and 0.846 in the data set for the other registries. The new PREDICT Breast model outperformed the current model and will be implemented in the online tool which should lead to more accurate absolute treatment benefit predictions for individual patients.

Funder

Bergmark Foundation

Mark Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3