Abstract
AbstractAlthough tobacco smoking is a risk factor for lung adenocarcinoma (LUAD), the mechanisms by which tobacco smoking induces LUAD development remain elusive. Histone methylation levels in human bronchial epithelial cells have been reported to increase after exposure to cigarettes. In this study, we explored the mechanisms regulating histone methylation in LUAD in response to smoking. We found that the histone H3K9 methylation reader CBX3 was upregulated in current smokers with LUAD, and that CBX3 overexpression promoted LUAD progression. Functional enrichment analyses revealed that CBX3 regulated the activation of Rho GTPases in LUAD. We also found that by forming a complex with TRIM28, TRIM24, and RBBP4, CBX3 repressed the expression of ARHGAP24 and increased the amount of active Rac1 in LUAD cells. Collectively, these results suggest that smoking associated upregulation of CBX3 promotes LUAD progression by activating the ARHGAP24/Rac1 pathway. Hence, the CBX3/ARHGAP24/Rac1 axis may represent a promising therapeutic target in smoking-induced LUAD.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Molecular Biology
Reference45 articles.
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249.
2. Stueve TR, Li WQ, Shi J, Marconett CN, Zhang T, Yang C, et al. Epigenome-wide analysis of DNA methylation in lung tissue shows concordance with blood studies and identifies tobacco smoke-inducible enhancers. Hum Mol Genet. 2017;26:3014–27.
3. Yu H, Raut JR, Schottker B, Holleczek B, Zhang Y, Brenner H. Individual and joint contributions of genetic and methylation risk scores for enhancing lung cancer risk stratification: data from a population-based cohort in Germany. Clin Epigenetics. 2020;12:89.
4. Sundar IK, Nevid MZ, Friedman AE, Rahman I. Cigarette smoke induces distinct histone modifications in lung cells: implications for the pathogenesis of COPD and lung cancer. J Proteome Res. 2014;13:982–96.
5. Kang N, Chen P, Chen Y, Zeng H, He X, Zhu Y. PRMT6 mediates CSE induced inflammation and apoptosis. Int Immunopharmacol. 2015;24:95–101.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献