Transcriptional regulators and alterations that drive melanoma initiation and progression

Author:

Gupta RomiORCID,Janostiak RadoslavORCID,Wajapeyee NarendraORCID

Abstract

AbstractAlthough melanoma is the least frequent type of skin cancer, it accounts for the majority of skin cancer-related deaths. Large-scale sequencing efforts have led to the classification of melanoma into four major subtypes (i.e., BRAF-mutant, NRAS-mutant, NF1-deficient, and triple wild-type). These sequencing studies have also revealed that melanoma genomes are some of the most mutated genomes of all cancers and therefore have a high neoantigen load. These findings have resulted in the development and clinical use of targeted therapies against the oncogenic BRAF→MEK→ERK pathway and immune checkpoint inhibitors for the treatment of metastatic melanoma. Although some patients with metastatic melanoma benefit immensely from these transformative therapies, others either become resistant or do not respond at all. These clinical challenges have intensified the search for new drug targets and drugs that can benefit patients who are either intrinsically resistant or have acquired resistance to targeted therapies and immunotherapies. Numerous signaling pathways and oncogenic drivers can cause changes in mRNA transcription that in turn drive melanoma initiation and progression. Transcriptional regulation of mRNA expression is necessary to maintain cell identity and cellular plasticity via the regulation of transcription factor expression and function, promoter/enhancer activities, chromatin regulators, and three-dimensional genome organization. Transcriptional deregulation can arise due to genetic and/or non-genetic alterations in the genome. Specifically, these deregulated transcriptional programs can become liabilities for melanoma cells due to their acquired dependencies on these programs for survival, which can be harnessed to develop new therapies for melanoma. In this article, we present an overview of the mechanisms that result in the transcriptional deregulation of mRNA expression in melanoma cells and assess how these changes facilitate melanoma initiation and progression. We also describe how these deregulated transcriptional pathways represent new opportunities for the development of unconventional and potentially impactful treatments for metastatic melanoma.

Funder

U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3