Benzo[a]pyrene stress impacts adaptive strategies and ecological functions of earthworm intestinal viromes

Author:

Xia Rong1,Sun Mingming1ORCID,Balcázar José Luis23ORCID,Yu Pingfeng4ORCID,Hu Feng1,Alvarez Pedro J J5

Affiliation:

1. Soil Ecology Lab, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Jiangsu Key Laboratory for Solid Organic Waste Utilization , Nanjing 210095, China

2. Catalan Institute for Water Research (ICRA) , 17003 Girona, Spain

3. University of Girona , 17004 Girona, Spain

4. College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310085, China

5. Civil and Environmental Engineering Department, Rice University , Houston, TX 77005, USA

Abstract

Abstract The earthworm gut virome influences the structure and function of the gut microbiome, which in turn influences worm health and ecological functions. However, despite its ecological and soil quality implications, it remains elusive how earthworm intestinal phages respond to different environmental stress, such as soil pollution. Here we used metagenomics and metatranscriptomics to investigate interactions between the worm intestinal phages and their bacteria under different benzo[a]pyrene (BaP) concentrations. Low-level BaP (0.1 mg kg−1) stress stimulated microbial metabolism (1.74-fold to control), and enhanced the antiphage defense system (n = 75) against infection (8 phage-host pairs). Low-level BaP exposure resulted in the highest proportion of lysogenic phages (88%), and prophages expressed auxiliary metabolic genes (AMGs) associated with nutrient transformation (e.g., amino acid metabolism). In contrast, high-level BaP exposure (200 mg kg−1) disrupted microbial metabolism and suppressed the antiphage systems (n = 29), leading to the increase in phage-bacterium association (37 phage-host pairs) and conversion of lysogenic to lytic phages (lysogenic ratio declined to 43%). Despite fluctuating phage-bacterium interactions, phage-encoded AMGs related to microbial antioxidant and pollutant degradation were enriched, apparently to alleviate pollution stress. Overall, these findings expand our knowledge of complex phage-bacterium interactions in pollution-stressed worm guts, and deepen our understanding of the ecological and evolutionary roles of phages.

Funder

National Natural Science Foundation of China

the Key R&D Project of Jiangsu Province

NSF ERC on Nanotechnology-Enabled Water Treatment

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3