Environmental influences on Streptococcus sanguinis membrane vesicle biogenesis

Author:

Helliwell Emily1,Choi Dongseok23ORCID,Merritt Justin14ORCID,Kreth Jens14ORCID

Affiliation:

1. Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU) , Portland, OR, USA

2. Department of Community Dentistry, School of Dentistry, Oregon Health & Science University (OHSU) , Portland, OR, USA

3. School of Public Health, Oregon Health & Science University (OHSU) , Portland, OR, USA

4. Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU) , Portland, OR, USA

Abstract

Abstract Membrane vesicles are produced by Gram-negative and Gram-positive bacteria. While membrane vesicles are potent elicitors of eukaryotic cells and involved in cell-cell communication, information is scarce about their general biology in the context of community members and the environment. Streptococcus sanguinis, a Gram-positive oral commensal, is prevalent in the oral cavity and well-characterized for its ability to antagonize oral pathobionts. We have found that production and dissemination of membrane vesicles by S. sanguinis is dependent on environmental and community factors. Co-culture with interacting commensal Corynebacterium durum, as well as with the periodontal pathobiont Filifactor alocis had no effect on S. sanguinis vesicle number and size, whereas the periodontal pathobiont Porphyromonas gingivalis abolished S. sanguinis vesicle production. Using both correlation and differential expression analyses to examine the transcriptomic changes underlying vesicle production, we found that differential expression of genes encoding proteins related to the cytoplasmic membrane and peptidoglycan correlate with the abundance of membrane vesicles. Proteomic characterizations of the vesicle cargo identified a variety of proteins, including those predicted to influence host interactions or host immune responses. Cell culture studies of gingival epithelial cells demonstrated that both crude and highly purified membrane vesicles could induce the expression of IL-8, TNF-α, IL-1β, and Gro-α within 6 hours of inoculation at levels comparable to whole cells. Our findings suggest that production of membrane vesicles by S. sanguinis is heavily influenced by community and environmental factors and plays an important role in communication with host cells.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Dental and Craniofacial Research

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of Exosomal Modulation of Macrophages in Liver Fibrosis;Journal of Clinical and Translational Hepatology;2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3