Neural complexity EEG biomarkers of rapid and post-rapid ketamine effects in late-life treatment-resistant depression: a randomized control trial

Author:

Murphy NicholasORCID,Tamman Amanda J. F.ORCID,Lijffijt Marijn,Amarneh Dania,Iqbal Sidra,Swann Alan,Averill Lynnette A.ORCID,O’Brien Brittany,Mathew Sanjay J.

Abstract

AbstractKetamine is an effective intervention for treatment-resistant depression (TRD), including late-in-life (LL-TRD). The proposed mechanism of antidepressant effects of ketamine is a glutamatergic surge, which can be measured by electroencephalogram (EEG) gamma oscillations. Yet, non-linear EEG biomarkers of ketamine effects such as neural complexity are needed to capture broader systemic effects, represent the level of organization of synaptic communication, and elucidate mechanisms of action for treatment responders. In a secondary analysis of a randomized control trial, we investigated two EEG neural complexity markers (Lempel-Ziv complexity [LZC] and multiscale entropy [MSE]) of rapid (baseline to 240 min) and post-rapid ketamine (24 h and 7 days) effects after one 40-min infusion of IV ketamine or midazolam (active control) in 33 military veterans with LL-TRD. We also studied the relationship between complexity and Montgomery-Åsberg Depression Rating Scale score change at 7 days post-infusion. We found that LZC and MSE both increased 30 min post-infusion, with effects not localized to a single timescale for MSE. Post-rapid effects of reduced complexity with ketamine were observed for MSE. No relationship was observed between complexity and reduction in depressive symptoms. Our findings support the hypothesis that a single sub-anesthetic ketamine infusion has time-varying effects on system-wide contributions to the evoked glutamatergic surge in LL-TRD. Further, changes to complexity were observable outside the time-window previously shown for effects on gamma oscillations. These preliminary results have clinical implications in providing a functional marker of ketamine that is non-linear, amplitude-independent, and represents larger dynamic properties, providing strong advantages over linear measures in highlighting ketamine’s effects.

Funder

U.S. Department of Veterans Affairs

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health,Pharmacology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3