Changes in oscillatory patterns of microstate sequence in patients with first-episode psychosis

Author:

Zhou Dong-DongORCID,Li Hong-Zhi,Wang Wo,Kuang Li

Abstract

AbstractWe aimed to utilize chaos game representation (CGR) for the investigation of microstate sequences and explore its potential as neurobiomarkers for psychiatric disorders. We applied our proposed method to a public dataset including 82 patients with first-episode psychosis (FEP) and 61 control subjects. Two time series were constructed: one using the microstate spacing distance in CGR and the other using complex numbers representing the microstate coordinates in CGR. Power spectral features of both time series and frequency matrix CGR (FCGR) were compared between groups and employed in a machine learning application. The four canonical microstates (A, B, C, and D) were identified using both shared and separate templates. Our results showed the microstate oscillatory pattern exhibited alterations in the FEP group. Using oscillatory features improved machine learning performance compared with classical features and FCGR. This study opens up new avenues for exploring the use of CGR in analyzing EEG microstate sequences. Features derived from microstate sequence CGR offer fine-grained neurobiomarkers for psychiatric disorders.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3