Exploring the electrophysiology of Parkinson’s disease with magnetoencephalography and deep brain recordings

Author:

Rassoulou Fayed,Steina Alexandra,Hartmann Christian J.,Vesper Jan,Butz Markus,Schnitzler Alfons,Hirschmann Jan

Abstract

AbstractAberrant information processing in the basal ganglia and connected cortical areas are key to many neurological movement disorders such as Parkinson’s disease. Investigating the electrophysiology of this system is difficult in humans because non-invasive methods, such as electroencephalography or magnetoencephalography, have limited sensitivity to deep brain areas. Recordings from electrodes implanted for therapeutic deep brain stimulation, in contrast, provide clear deep brain signals but are not suited for studying cortical activity. Therefore, we combine magnetoencephalography and local field potential recordings from deep brain stimulation electrodes in individuals with Parkinson’s disease. Here, we make these data available, inviting a broader scientific community to explore the dynamics of neural activity in the subthalamic nucleus and its functional connectivity to cortex. The dataset encompasses resting-state recordings, plus two motor tasks: static forearm extension and self-paced repetitive fist clenching. Most patients were recorded both in the medicated and the unmedicated state. Along with the raw data, we provide metadata on channels, events and scripts for pre-processing to help interested researchers get started.

Funder

Brunhilde Moll Stiftung

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3