Single-cell transcriptome atlas of lung adenocarcinoma featured with ground glass nodules

Author:

Lu Tao,Yang Xiaodong,Shi Yu,Zhao Mengnan,Bi Guoshu,Liang Jiaqi,Chen Zhencong,Huang Yiwei,Jiang Wei,Lin Zongwu,Xi Junjie,Wang Shuai,Yang Yong,Zhan ChengORCID,Wang Qun,Tan Lijie

Abstract

AbstractAs an early type of lung adenocarcinoma, ground glass nodule (GGN) has been detected increasingly and now accounts for most lung cancer outpatients. GGN has a satisfactory prognosis and its characteristics are quite different from solid adenocarcinoma (SADC). We compared the GGN adenocarcinoma (GGN-ADC) with SADC using the single-cell RNA sequencing (scRNA-seq) to fully understand GGNs. The tumor samples of five patients with lung GGN-ADCs and five with SADCs underwent surgery were digested to a single-cell suspension and analyzed using 10× Genomic scRNA-seq techniques. We obtained 60,459 cells and then classified them as eight cell types, including cancer cells, endothelial cells, fibroblasts, T cells, B cells, Nature killer cells, mast cells, and myeloid cells. We provided a comprehensive description of the cancer cells and stromal cells. We found that the signaling pathways related to cell proliferation were downregulated in GGN-ADC cancer cells, and stromal cells had different effects in GGN-ADC and SADC based on the analyses of scRNA-seq results. In GGN-ADC, the signaling pathways of angiogenesis were downregulated, fibroblasts expressed low levels of some collagens, and immune cells were more activated. Furthermore, we used flow cytometry to isolate the cancer cells and T cells in 12 GGN-ADC samples and in an equal number of SADC samples, including CD4+ T and CD8+ T cells, and validated the expression of key molecules by quantitative real-time polymerase chain reaction analyses. Through comprehensive analyses of cell phenotypes in GGNs, we provide deep insights into lung carcinogenesis that will be beneficial in lung cancer prevention and therapy.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Genetics,Molecular Biology,Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3