A plant virus differentially alters DNA methylation in two cryptic species of a hemipteran vector

Author:

Catto Michael A.,Ghosh Saptarshi,Pandey Sudeep,Mondal Banani,Simmons Alvin,Hunt Brendan G.,Srinivasan Rajagopalbabu

Abstract

AbstractEpigenetic patterns including DNA methylation are known to vary between distantly related species, but it is not clear how these patterns differ at an intraspecific level. The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Aleyrodidae; Hemiptera), encompasses several cryptic species. These cryptic species possess highly similar genomes but exhibit substantial biological and physiological differences. B. tabaci cryptic species are invasive, highly polyphagous, and transmit an array of plant infecting single stranded DNA viruses (ssDNA) –begomoviruses. In this study, DNA methylation patterns around genes and genomic features of two prominent B. tabaci cryptic species were investigated following acquisition of a monopartite ssDNA virus –tomato yellow curl virus. The cryptic species investigated included: B (also known as Middle East Asia Minor 1) and Q (also known as Mediterranean). Genomic features, such as promoters, gene bodies, and transposable elements were assessed for methylation levels in both B and Q cryptic species. Despite overall similar trends, both cryptic species showed differences in methylation levels between these genomic features. Virus induced differentially methylated regions were associated with predominantly distinct genes in B and Q cryptic species. All differentially methylated regions were assessed for differential gene expression and alternative splicing events with and without virus acquisition. DNA methylation levels were found to have a negative correlation with differential gene expression in both B and Q cryptic species. The differentially expressed genes were further grouped into hyper- and hypomethylated clusters. These clusters included genes with implications for virus-vector interactions including immune functions and xenobiotics’ detoxification. The observed DNA methylation pattern differences within each cryptic species could, in part, explain some of the biological and physiological differences between them.

Funder

USDA Non-Assistance Cooperative Agreement

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3