Abstract
AbstractIntegrating nitrogen species into sp2-hybridized carbon materials has proved an efficient means to improve their electrochemical performance. Nevertheless, an inevitable mixture of nitrogen species in carbon materials, due to the uncontrolled conversion among different nitrogen configurations involved in synthesizing nitrogen-doped carbon materials, largely retards the precise identification of electrochemically active nitrogen configurations for specific reactions. Here, we report the preparation of single pyrrolic N-doped carbon materials (SPNCMs) with a tunable nitrogen content from 0 to 4.22 at.% based on a strategy of low-temperature dehalogenation-induced and subsequent alkaline-activated pyrolysis of 3-halogenated phenol-3-aminophenol-formaldehyde (X-APF) co-condensed resins. Additionally, considering that the pseudocapacitance of SPNCMs is positively dependent on the pyrrolic nitrogen content, it could be inferred that pyrrolic nitrogen species are highly active pseudocapacitive sites for nitrogen-doped carbon materials. This work gives an ideal model for understanding the contribution of pyrrolic nitrogen species in N-doped carbon materials.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
188 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献