Abstract
AbstractFerroelectric polymers have great potential applications in mechanical/thermal sensing, but their sensitivity and detection limit are still not outstanding. We propose interface engineering to improve the charge collection in a ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) copolymer (P(VDF-TrFE)) thin film via cross-linking with poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonate (PEDOT:PSS) layer. The as-fabricated P(VDF-TrFE)/PEDOT:PSS composite film exhibits an ultrasensitive and linear mechanical/thermal response, showing sensitivities of 2.2 V kPa−1 in the pressure range of 0.025–100 kPa and 6.4 V K−1 in the temperature change range of 0.05–10 K. A corresponding piezoelectric coefficient of −86 pC N−1 and a pyroelectric coefficient of 95 μC m−2 K−1 are achieved because more charge is collected by the network interconnection interface between PEDOT:PSS and P(VDF-TrFE), related to the increase in the dielectric properties. Our work shines a light on a device-level technique route for boosting the sensitivity of ferroelectric polymer sensors through electrode interface engineering.
Funder
Natural Science Foundation of Guangdong Province
National Natural Science Foundation of China
initial financial support from HUST
the initial financial support from HUST
Guangdong Provincial Key Laboratory Program Tencent Foundation through the XPLORER PRIZE Shenzhen Natural Science Funds for Distinguished Young Scholar
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献