Digitally-enhanced lubricant evaluation scheme for hot stamping applications

Author:

Yang XiaoORCID,Liu Heli,Dhawan Saksham,Politis Denis J.,Zhang JieORCID,Dini DanieleORCID,Hu Lan,Gharbi Mohammad M.,Wang LiliangORCID

Abstract

AbstractDigitally-enhanced technologies are set to transform every aspect of manufacturing. Networks of sensors that compute at the edge (streamlining information flow from devices and providing real-time local data analysis), and emerging Cloud Finite Element Analysis technologies yield data at unprecedented scales, both in terms of volume and precision, providing information on complex processes and systems that had previously been impractical. Cloud Finite Element Analysis technologies enable proactive data collection in a supply chain of, for example the metal forming industry, throughout the life cycle of a product or process, which presents revolutionary opportunities for the development and evaluation of digitally-enhanced lubricants, which requires a coherent research agenda involving the merging of tribological knowledge, manufacturing and data science. In the present study, data obtained from a vast number of experimentally verified finite element simulation results is used for a metal forming process to develop a digitally-enhanced lubricant evaluation approach, by precisely representing the tribological boundary conditions at the workpiece/tooling interface, i.e., complex loading conditions of contact pressures, sliding speeds and temperatures. The presented approach combines the implementation of digital characteristics of the target forming process, data-guided lubricant testing and mechanism-based accurate theoretical modelling, enabling the development of data-centric lubricant limit diagrams and intuitive and quantitative evaluation of the lubricant performance.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference36 articles.

1. The Manufacturer. Annual Manufacturing Report 2020: The search for stability. https://www.pwc.co.uk/industries/manufacturing/insights/annual-manufacturing-report.html (2020).

2. Letichevsky, A. A., Letychevskyi, O. O., Skobelev, V. G. & Volkov, V. A. Cyber-physical systems. Cybern. Syst. Anal. 53, 821–834 (2017).

3. Uhlemann, T. H. J., Lehmann, C. & Steinhilper, R. The digital twin: realizing the cyber-physical production system for industry 4.0. In Procedia CIRP 61 335–340 (Elsevier B.V., 2017).

4. Abbasi, A., Sarker, S. & Chiang, R. H. L. Big data research in information systems: toward an inclusive research agenda. J. Assoc. Inf. Syst. 17, 1–32 (2016).

5. Manyika, J. et al. Big Data: The Next Frontier for Innovation, Competition, and Productivity (McKinsey Global Institute, 2011).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3