Microbiota mediated plasticity promotes thermal adaptation in the sea anemone Nematostella vectensis

Author:

Baldassarre LauraORCID,Ying Hua,Reitzel Adam M.ORCID,Franzenburg SörenORCID,Fraune SebastianORCID

Abstract

AbstractAt the current rate of climate change, it is unlikely that multicellular organisms will be able to adapt to changing environmental conditions through genetic recombination and natural selection alone. Thus, it is critical to understand alternative mechanisms that allow organisms to cope with rapid environmental changes. Here, we use the sea anemone Nematostella vectensis, which has evolved the capability of surviving in a wide range of temperatures and salinities, as a model to investigate the microbiota as a source of rapid adaptation. We long-term acclimate polyps of Nematostella to low, medium, and high temperatures, to test the impact of microbiota-mediated plasticity on animal acclimation. Using the same animal clonal line, propagated from a single polyp, allows us to eliminate the effects of the host genotype. The higher thermal tolerance of animals acclimated to high temperature can be transferred to non-acclimated animals through microbiota transplantation. The offspring fitness is highest from F0 females acclimated to high temperature and specific members of the acclimated microbiota are transmitted to the next generation. These results indicate that microbiota plasticity can contribute to animal thermal acclimation and its transmission to the next generation may represent a rapid mechanism for thermal adaptation.

Funder

Human Frontier Science Program

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3