Strategies to enable large-scale proteomics for reproducible research

Author:

Poulos Rebecca C.ORCID,Hains Peter G.ORCID,Shah RohanORCID,Lucas Natasha,Xavier DylanORCID,Manda Srikanth S.ORCID,Anees Asim,Koh Jennifer M. S.,Mahboob SadiaORCID,Wittman Max,Williams Steven G.ORCID,Sykes Erin K.ORCID,Hecker Michael,Dausmann MichaelORCID,Wouters Merridee A.ORCID,Ashman KeithORCID,Yang JeanORCID,Wild Peter J.ORCID,deFazio AnnaORCID,Balleine Rosemary L.ORCID,Tully BrettORCID,Aebersold RuediORCID,Speed Terence P.ORCID,Liu YanshengORCID,Reddel Roger R.ORCID,Robinson Phillip J.ORCID,Zhong QingORCID

Abstract

AbstractReproducible research is the bedrock of experimental science. To enable the deployment of large-scale proteomics, we assess the reproducibility of mass spectrometry (MS) over time and across instruments and develop computational methods for improving quantitative accuracy. We perform 1560 data independent acquisition (DIA)-MS runs of eight samples containing known proportions of ovarian and prostate cancer tissue and yeast, or control HEK293T cells. Replicates are run on six mass spectrometers operating continuously with varying maintenance schedules over four months, interspersed with ~5000 other runs. We utilise negative controls and replicates to remove unwanted variation and enhance biological signal, outperforming existing methods. We also design a method for reducing missing values. Integrating these computational modules into a pipeline (ProNorM), we mitigate variation among instruments over time and accurately predict tissue proportions. We demonstrate how to improve the quantitative analysis of large-scale DIA-MS data, providing a pathway toward clinical proteomics.

Funder

Department of Health | National Health and Medical Research Council

Cancer Institute NSW

NSW Ministry of Health

University of Sydney

Medical Research Futures Fund

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3