Abstract
AbstractThe combination of alkali metal electrodes and solid-state electrolytes is considered a promising strategy to develop high-energy rechargeable batteries. However, the practical applications of these two components are hindered by the large interfacial resistance and growth of detrimental alkali metal depositions (e.g., dendrites) during cycling originated by the unsatisfactory electrode/solid electrolyte contact. To tackle these issues, we propose a room temperature ultrasound solid welding strategy to improve the contact between Na metal and Na3Zr2Si2PO12 (NZSP) inorganic solid electrolyte. Symmetrical Na|NZSP | Na cells assembled via ultrasonic welding show stable Na plating/stripping behavior at a current density of 0.2 mA cm−2 and a higher critical current density (i.e., 0.6 mA cm−2) and lower interfacial impedance than the symmetric cells assembled without the ultrasonic welding strategy. The beneficial effect of the ultrasound welding is also demonstrated in Na|NZSP | Na3V2(PO4)3 full coin cell configuration where 900 cycles at 0.1 mA cm−2 with a capacity retention of almost 90% can be achieved at room temperature.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Tianjin City
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献