Early triage of critically ill COVID-19 patients using deep learning

Author:

Liang WenhuaORCID,Yao Jianhua,Chen Ailan,Lv Qingquan,Zanin Mark,Liu JunORCID,Wong SookSan,Li YiminORCID,Lu Jiatao,Liang HengruiORCID,Chen Guoqiang,Guo Haiyan,Guo Jun,Zhou Rong,Ou Limin,Zhou Niyun,Chen Hanbo,Yang Fan,Han Xiao,Huan Wenjing,Tang Weimin,Guan Weijie,Chen Zisheng,Zhao Yi,Sang Ling,Xu Yuanda,Wang Wei,Li Shiyue,Lu Ligong,Zhang Nuofu,Zhong Nanshan,Huang Junzhou,He JianxingORCID

Abstract

AbstractThe sudden deterioration of patients with novel coronavirus disease 2019 (COVID-19) into critical illness is of major concern. It is imperative to identify these patients early. We show that a deep learning-based survival model can predict the risk of COVID-19 patients developing critical illness based on clinical characteristics at admission. We develop this model using a cohort of 1590 patients from 575 medical centers, with internal validation performance of concordance index 0.894 We further validate the model on three separate cohorts from Wuhan, Hubei and Guangdong provinces consisting of 1393 patients with concordance indexes of 0.890, 0.852 and 0.967 respectively. This model is used to create an online calculation tool designed for patient triage at admission to identify patients at risk of severe illness, ensuring that patients at greatest risk of severe illness receive appropriate care as early as possible and allow for effective allocation of health resources.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2022 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3