Abstract
AbstractThe ever-growing quantities of persistent Polytetrafluoroethylene (PTFE) wastes, along with consequential ecological and human health concerns, stimulate the need for alternative PTFE disposal method. The central research challenge lies in elucidating the decomposition mechanism of PTFE during high-temperature waste treatment. Here, we propose the PTFE microscopic thermal decomposition pathways by integrating plasma gasification experiments with multi-scale simulations strategies. Molecular dynamic simulations reveal a pyrolysis—oxidation & chain-shortening—deep defluorination (POCD) degradation pathway in an oxygen atmosphere, and an F abstraction—hydrolysis—deep defluorination (FHD) pathway in a steam atmosphere. Density functional theory computations demonstrate the vital roles of 1O2 and ·H radicals in the scission of PTFE carbon skeleton, validating the proposed pathways. Experimental results confirm the simulation results and show that up to 80.12% of gaseous fluorine can be recovered through plasma gasification within 5 min, under the optimized operating conditions determined through response surface methodology.
Publisher
Springer Science and Business Media LLC
Reference79 articles.
1. Puts, G. J., Crouse, P. & Ameduri, B. M. Polytetrafluoroethylene: synthesis and characterization of the original extreme polymer. Chem. Rev. 119, 1763–1805 (2019).
2. China Association of Fluorine and Silicone Industry (CAFSI). Global production of PTFE in 2021. Retrieved from http://www.sif.org.cn/article/419 (2022).
3. Xing, Z., Hu, L., Ripatti, D. S., Hu, X. & Feng, X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 12, 136 (2021).
4. Nauruzbayeva, J. et al. Electrification at water-hydrophobe interfaces. Nat. Commun. 11, 5285 (2020).
5. Tressaud, A. Fluorine: Fluorine, a key element for the 21st century. (Elsevier Science, Online, 2019).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献