Abstract
AbstractThe heat carriers responsible for the unexpectedly large thermal Hall conductivity of the cuprate Mott insulator La2CuO4 were recently shown to be phonons. However, the mechanism by which phonons in cuprates acquire chirality in a magnetic field is still unknown. Here, we report a similar thermal Hall conductivity in two cuprate Mott insulators with significantly different crystal structures and magnetic orders – Nd2CuO4 and Sr2CuO2Cl2 – and show that two potential mechanisms can be excluded – the scattering of phonons by rare-earth impurities and by structural domains. Our comparative study further reveals that orthorhombicity, apical oxygens, the tilting of oxygen octahedra and the canting of spins out of the CuO2 planes are not essential to the mechanism of chirality. Our findings point to a chiral mechanism coming from a coupling of acoustic phonons to the intrinsic excitations of the CuO2 planes.
Funder
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada
Fonds de Recherche du Québec - Nature et Technologies
Canada Research Chairs
Canadian Institute for Advanced Research
Canada Foundation for Innovation
Canada First Research Excellence Fund
Gordon and Betty Moore Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献