Abstract
AbstractChromism—color changes by external stimuli—has been intensively studied to develop smart materials because of easily detectability of the stimuli by eye or common spectroscopy as color changes. Luminescent chromism has particularly attracted research interest because of its high sensitivity. The color changes typically proceed in a one-way, two-state cycle, i.e. a stimulus-induced state will restore the initial state by another stimuli. Chromic systems showing instant, biphasic color switching and spontaneous reversibility will have wider practical applicability. Here we report luminescent chromism having such characteristics shown by mechanically controllable phase transitions in a luminescent organosuperelastic crystal. In mechanochromic luminescence, superelasticity—diffusion-less plastic deformation with spontaneous shape recoverability—enables real-time, reversible, and stepless control of the abundance ratio of biphasic color emissions via a single-crystal-to-single-crystal transformation by controlling a single stimulus, force stress. The unique chromic system, referred to as superelastochromism, holds potential for realizing informative molecule-based mechanical sensing.
Funder
MEXT | Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference37 articles.
1. Bamfield, P. & Hutchings, M. Chromic Phenomena: Technological Applications of Colour Chemistry 3rd edn. (RSC Publishing, Cambridge UK, 2018).
2. Sagara, Y., Mutai, T., Yoshikawa, I. & Araki, K. Material design for piezochromic luminescence: hydrogen-bond-directed assemblies of a pyrene derivative. J. Am. Chem. Soc. 129, 1520–1521 (2007).
3. Ito, H. et al. Reversible mechanochromic luminescence of [(C6F5Au)2(µ-1,4-diisocyanobenzene)]. J. Am. Chem. Soc. 130, 10044–10045 (2008).
4. Krishna, G. R., Kiran, M. S. R. N., Fraser, C. L., Ramamurty, U. & Reddy, C. M. The relationship of solid-state plasticity to mechanochromic luminescence in difluoroboron avobenzone polymorphs. Adv. Funct. Mater. 23, 1422–1430 (2013).
5. Chi, Z. et al. Recent advances in organic mechanofluorochromic materials. Chem. Soc. Rev. 41, 3878–3896 (2012).
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献