Author:
Wildi Thibault,Ulanov Alexander E.,Voumard Thibault,Ruhnke Bastian,Herr Tobias
Abstract
AbstractMicroresonator frequency combs (microcombs) hold great potential for precision metrology within a compact form factor, impacting a wide range of applications such as point-of-care diagnostics, environmental monitoring, time-keeping, navigation and astronomy. Through the principle of self-injection locking, electrically-driven chip-based microcombs with minimal complexity are now feasible. However, phase-stabilisation of such self-injection-locked microcombs—a prerequisite for metrological frequency combs—has not yet been attained. Here, we address this critical need by demonstrating full phase-stabilisation of a self-injection-locked microcomb. The microresonator is implemented in a silicon nitride photonic chip, and by controlling a pump laser diode and a microheater with low voltage signals (less than 1.57 V), we achieve independent control of the comb’s offset and repetition rate frequencies. Both actuators reach a bandwidth of over 100 kHz, enabling phase-locking of the microcomb to external frequency references. These results establish photonic chip-based, self-injection-locked microcombs as low-complexity yet versatile sources for coherent precision metrology in emerging applications.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献