Abstract
AbstractThe longwave infrared (LWIR) region of the spectrum spans 8 to 14 μm and enables high-performance sensing and imaging for detection, ranging, and monitoring. Chip-scale LWIR photonics has enormous potential for real-time environmental monitoring, explosive detection, and biomedicine. However, realizing technologies such as precision sensors and broadband frequency combs requires ultra low-loss and low-dispersion components, which have so far remained elusive in this regime. Here, we use native germanium to demonstrate the first high-quality microresonators in the LWIR. These microresonators are coupled to partially-suspended Ge waveguides on a separate glass chip, allowing for the first unambiguous measurements of isolated linewidths. At 8 μm, we measured losses of 0.5 dB/cm and intrinsic quality (Q) factors of 2.5 × 105, nearly two orders of magnitude higher than prior LWIR resonators. Our work portends the development of novel sensing and nonlinear photonics in the LWIR regime.
Funder
Norges Forskningsråd
United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research
National Science Foundation
United States Department of Defense | United States Navy | Office of Naval Research
Gordon and Betty Moore Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献