Efficient long-range conduction in cable bacteria through nickel protein wires
-
Published:2021-06-28
Issue:1
Volume:12
Page:
-
ISSN:2041-1723
-
Container-title:Nature Communications
-
language:en
-
Short-container-title:Nat Commun
Author:
Boschker Henricus T. S.ORCID, Cook Perran L. M.ORCID, Polerecky LubosORCID, Eachambadi Raghavendran ThiruvallurORCID, Lozano HelenaORCID, Hidalgo-Martinez Silvia, Khalenkow Dmitry, Spampinato Valentina, Claes NathalieORCID, Kundu Paromita, Wang Da, Bals SaraORCID, Sand Karina K.ORCID, Cavezza Francesca, Hauffman TomORCID, Bjerg Jesper Tataru, Skirtach Andre G.ORCID, Kochan Kamila, McKee Merrilyn, Wood BaydenORCID, Bedolla DianaORCID, Gianoncelli AlessandraORCID, Geerlings Nicole M. J., Van Gerven Nani, Remaut Han, Geelhoed Jeanine S.ORCID, Millan-Solsona RubenORCID, Fumagalli LauraORCID, Nielsen Lars PeterORCID, Franquet Alexis, Manca Jean V.ORCID, Gomila Gabriel, Meysman Filip J. R.ORCID
Abstract
AbstractFilamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek Fonds Wetenschappelijk Onderzoek EC | Horizon 2020 Framework Programme Ministry of Economy and Competitiveness | Agencia Estatal de Investigación Generalitat de Catalunya Special Research Fund (BOF) of Ghent University
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference50 articles.
1. Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B. & Sayama, M. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463, 1071–1074 (2010). 2. Pfeffer, C. et al. Filamentous bacteria transport electrons over centimetre distances. Nature 491, 218–221 (2012). 3. Bjerg, J. T. et al. Long-distance electron transport in individual, living cable bacteria. Proc. Natl Acad. Sci. USA 115, 5786–5791 (2018). 4. Meysman, F. J. R. Cable bacteria take a new breath using long-distance electricity. Trends Microbiol. https://doi.org/10.1016/j.tim.2017.10.011 (2018). 5. Cornelissen, R. et al. The cell envelope structure of cable bacteria. Front. Microbiol. 9, 3044 (2018).
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|